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We study the shear-induced self-diffusion of both a liquid tracer and a tagged spherical 
particle along the directions perpendicular to the ambient flow in a dilute suspension 
of neutrally buoyant spheres undergoing a simple shearing motion in the absence of 
inertia and Brownian motion effects. The calculation of the liquid diffusivity requires 
the velocity of a fluid point under the influence of two spheres, which was determined 
via Lamb‘s series expansion; conversely, the calculation of the particle diffusivity 
involves the trajectories of three spheres, which were determined using far-field and 
near-field asymptotic expressions. The displacements of the liquid tracer and of the 
tagged sphere were then computed analytically when the spheres and the tracer are 
all far apart, and numerically for close encounters. After summing over all possible 
encounters, the leading terms of the lateral liquid diffusion coefficients, both within 
and normal to the plane of shear, were thereby found to be 0.12;’a’c2 and 0.004ya2c2, 
respectively, where 1’ is the applied shear rate, a the radius of the spheres and c 
their volume fraction. The analogous coefficients of the lateral particle diffusivity 
were found to be 0.11ya2c2 and 0.005ya2c2, respectively. Also, liquid and particle 
diffusivities in a monolayer, with the liquid tracer and all the particle centres lying 
on the same plane of shear, were found to be 0.067yu’T.’ and 0.032ya2C2, respectively, 
with C denoting the areal fraction occupied by the spheres on the plane. 

1. Introduction 
The non-Brownian particle migration in suspensions involving only deterministic 

hydrodynamic interactions can often be represented in terms of a self-diffusion 
process owing to the random nature of the collisions among the suspended particles. 
Such a shear-induced particle diffusion has been shown to play an important role in a 
variety of phenomena involving concentrated suspensions which affect certain of their 
properties in a profound way. Shear-induced diffusion was first studied experimentally 
by Eckstein, Bailey & Shapiro (1977), who monitored the motion of a tagged particle 
within a suspension being sheared in a Couette device, and then was examined 
in more detail by Leighton & Acrivos (1987a, h )  who reported experimental values 
for the lateral diffusion coefficients both within and normal to the plane of shear. 
Two-dimensional numerical simulations by Bossis & Brady (1987) and by Chang & 
Powell (1994) for the monolayer diffusivity were found to agree qualitatively with 
these results. Recently, by considering only two-particle interactions, Acrivos et al. 
(1992) derived an analytic expression for the coefficient of shear-induced self-diffusion 
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in the direction of the fluid motion for a dilute suspension of spheres undergoing 
a simple shearing motion, while da Cunha & Hinch (1996) studied the effect of 
surface roughness on the interaction of two particles and calculated the coefficients 
of the self- and gradient-diffusivity in the lateral directions. Here, we shall extend 
the analysis of Acrivos et a2. (1992) and present expressions for the self-diffusivity of 
both a tracer fluid particle and a test sphere in the two directions perpendicular to 
the fluid velocity. 

This paper proceeds as follows. After formulating the problem in $2, we derive in 
993 and 4 the expressions for the velocities of the fluid tracer plus those of the test 
sphere as well as the other two spheres in a simple shear flow, which are then used in 
$5 to compute the displacement of a liquid tracer and of a test sphere following their 
encounter with the other two particles. Finally, in $6, we determine the coefficients 
of self-diffusion in the directions perpendicular to the fluid velocity, both within and 
normal to the plane of shear. 

2. Statement of the problem 
Consider a dilute monodisperse suspension of rigid spheres of radius a immersed 

in a viscous liquid. The spheres are supposed to be neutrally buoyant and torque-free, 
and their radius a is taken to be sufficiently large that the effects of Brownian motion 
and interparticle potentials can be neglected. Furthermore, the particle Reynolds 
number is assumed to be vanishingly small, so that all inertia effects can be ignored. 
Now, let the suspension undergo a simple shearing motion, the undisturbed velocity 
of which is given by 

where (x1,x2,x3) is the position vector relative to a fixed triad of unit vectors el, e2 
and e3 which forms a right-hand system. All lengths, time and velocities are regarded 
as having been non-dimensionalized with a, l / y  and ya respectively, where y is the 
shear rate. 

First, consider a fluid point A* and let X denote its position, where X = 0 initially. 
In the absence of the suspended spheres, A* would simply remain at the origin. 
However, when a sphere B, with its centre located at Y ,  approaches from far away, 
A* will be displaced at first from the origin, but will return to its initial streamline at 
the end of the encounter, as a consequence of the reversibility of the creeping flow 
equations and the symmetry of the problem. Hence, the interaction of a fluid tracer 
with a single sphere will not lead to its being permanently displaced in the lateral 
direction, and therefore to create such a displacement, it is necessary that A* and B 
interact with at least another sphere C located at Z (see figure 1). 

Since the probability of finding two spheres within an O( 1) distance from the tracer 
is O(c2), where c is the particle volume fraction, we expect the rate of encounters of 
a fluid tracer with two spheres to be of O(c2). In addition, as the rate of encounters 
involving more spheres is of o(c2), we need to consider only the interactions of the 
tracer with two spheres in order to calculate the leading-order term of the lateral 
diffusivities of the fluid tracer. 

As a result of its encounters with the other two spheres, the fluid tracer in a 
statistically homogeneous suspension suffers a series of random displacement with 
zero mean. In a dilute suspension, these encounters can be regarded as statistically 
independent and thus the displacement of the fluid tracer in the lateral direction can 
be treated as a self-diffusive process with the diffusion coefficients 0; and 0; being 

U = x2el, ( 1 )  
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FIGURE 1. Coordinates used in this work. 

defined as 
N 

1 D* = lim - (AX:’)‘, ’ T-z2T  
k = l  

where AX@’ refers to the displacement of the fluid tracer in the j-direction ( j  = 2,3) 
resulting trom its kth encounter with two spheres and N is the total number of such 
encounters within the time interval T .  

Obviously, both the values of AX:’ and the rate of encounters are determined 
by the initial positions of the two spheres, once the probability distribution of the 
initial configurations is known. Thus, as shown below, for statistically homogeneous 
suspensions at steady state, the expression for DJ given above can be reduced to an 
integral of the contributions over all the possible initial positions of the two spheres, 
which is more convenient to evaluate than the summation in (2). 

Before analysing the different types of possible initial configurations of the spheres, 
we note that, in order for an encounter to create a significant permanent lateral 
displacement AX:’, the fluid tracer and the two spheres must all be reasonably close 
to each other during a certain period of time. Otherwise, the fluid tracer will interact 
separately with the two spheres and therefore will not suffer a permanent lateral 
displacement. Thus, we consider only those initial configurations where, at some time 
during their encounter, the spheres and the fluid tracer happen to lie within a cubic 
‘collision box’ of dimensions (2l)’. Later on, we shall show that the contribution to 
D; in ( 2 )  due to the encounters which take place outside the collision box (i.e. such 
that the fluid tracer and the two spheres are never present within the collision box at 
the same time) tends to zero as 1 - cc. Therefore, the integration over the initial 
configurations tends to a constant value that can be determined numerically, without 
the need to introduce a renormalization as often happens with other calculations 
involving the effective properties of suspensions. 

Now, prior to the encounter, the initial positions of spheres B and C will belong to 
one of the following three categories: 

(i) both spheres B and C are far away from the fluid tracer; 
(ii) the fluid tracer A* orbits around one of the spheres as long as the other sphere 

(iii) the fluid tracer A* together with the spheres B and C form a permanent triplet. 
First, consider case (i), where initially the fluid tracer A* is located at the origin 

while spheres B and C can be either on the left or 03 the right side of the collision 
box. But, by virtue of the symmetry of the particle distribution about the origin, we 

is far away; 
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FIGURE 2. The integration domains W t  and W c ,  within the plane x3 = 0. 

only need to consider the case where the sphere B, chosen as the sphere which first 
crosses the boundary of the box, enters from the left side at t = 0. 

Now, when we calculate the contribution of this case to the diffusion coefficient 
in (2), we consider all possible initial positions of spheres B and C, such that A*, 
B and C find themselves inside the collision box at some stage during the course of 
their encounter. The loci of these initial positions of B and C form two domains 
W E  and W c ,  which can be determined by first neglecting the interactions among 
the spheres, so that B and C can be assumed to move with the velocity of the 
ambient flow. Then, obviously, YcO),  which refers to the initial position of B, can 
only lie on the upper half of the left-hand surface of the box. We denote this 
domain by W:: {-I < Y;’) < 1, 0 ,< Y,(o) < l } .  Accordingly, since B stays inside 
the box from t = 0 to t = 2l/Y,’0’, the possible initial position of C, Z(O), must 
lie within that part of the fluid which flows into the box during that period of 
time. This domain W: has the shape of two wedges, one of which is given by 
(-1 < ZF) < 1, 0 < Zp) < 1, -1 - 21Zf’/Y,’’’ < 2:’) < -1} while the other is that 
generated by rotating the wedge depicted above about the axis x3 by an angle n (see 
figure 2). 

In arriving at the above estimate, all hydrodynamic interactions among the spheres 
and the fluid tracer were neglected, but obviously these interactions will alter the 
domains only slightly. First of all, the time needed for sphere B to pass through 
the collision box will be slightly different from that estimated above by an amount 
that can be evaluated exactly through a direct numerical calculation of its trajectory. 
Secondly, when the interactions between B and C are considered, one needs to take 
into account the possibility that, initially, B could be located on the lower half of 
the left-hand surface of the collision box, i.e. even when Y,(o) < 0, B could still end 
up moving from left to right in certain cases. This happens, for example, when B 
and C form a permanent doublet when left alone in the ambient flow, provided that 
the midpoint between B and C lies above the plane x2 = 0. The real domain W E  is 
therefore slightly larger than the estimate W: and its exact shape can be determined 
via the solution of the pair sphere trajectories (Batchelor & Green 1972a). These 
considerations can be extended to W c .  

Next, we consider the rate at which a pair of spheres B and C enters the collision 
box, with B initially lying in the surface element dY,(”dY;” and C within the volume 
element dZ,’0’dZf’dZr’. Now, the rate at which B enters the box is given by 
nI/,BdY,(0)dY3(0)1 Y ,  (0)- -- I ,  with n denoting the number of spheres per unit volume and 
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V f  the velocity of B along the el-direction, while the probability of finding C within 
the volume element d Z ~ o ’ d Z ~ ) d Z ~ o ’  inside the domain W c  is np(rec)dZio)dZ~’)dZ~’, 
where p (  r e c )  is the pair distribution function. When only two-sphere interactions are 
considered, p(r)  equals the function y(r) of Batchelor & Green (1972b) if Y lies outside 
the region of closed trajectories, and is indeterminate when it lies inside. In $6, we 
shall show that our final results are very insensitive to the specific form of p ( r )  which 
is assumed to apply in the region of closed trajectories. 

Finally, the contribution of case (i)  to the sum in (2) is given by 

DJ’ = n2 /i,B L,r p(rBC) (AXj ) ’  I/,(B’dY,(o)dY:o’dZ~’dZ:O’dZ~), (3) 

where AX, is the net displacement of A* resulting from its encounter with B and C 
initially lying within the elements dY:”dY,’” and dZ , ’o ’dZ~’dZ~’ ,  respectively. 

For case (ii), we label as C the sphere around which A* would orbit indefinitely in 
the absence of another particle. Now, in most cases C will be close to A*, so that, for 
large enough I ,  we can take p ( r B c )  = 1. The contribution of case (ii) to the sum (2) is 
then given by 

D; = n2 /-/ .I’ (AX,)2 VjB’d Y!”’d Y,’o’dZ,(o’dZ:o’dZ(o) - 3 -  (4) 
A*.C hourid 

Here though, before the encounter, X j  changes periodically with time and its average 
value equals that of the position of the centre of C. Moreover, since for dilute 
suspensions, B is located initially very far from the pair, the net displacement of 
A* occurs on a time scale much larger than that required for the pair to complete 
one revolution. In addition, we note that the periodic motion of the tracer particle 
A* around C does not, by itself, contribute to the diffusion process. Hence, to be 
consistent with (2), and given that the initial location of B is also random, we take 
this average value of A* orbiting about C before the encounter as the initial position 
of A*. After the encounter, the initially bound A* can either continue orbiting around 
C or be displaced out of the region of closed trajectories. In the former case, we 
take the average value of X,, which is the same as the position of the centre of the 
sphere around which it orbits, as the final position of A*. Now, as any two-sphere 
interactions do not lead to a permanent lateral displacement of the spheres, the net 
displacement of A* in this case will be zero. So, the only possible contribution to 
D;‘’ comes from those cases for which A* is displaced out of the region of closed 
trajectories around C. 

Finally, for case (iii), where A*, B and C form a permanent triplet, the net lateral 
displacement of A* is zero as a consequence of the reversibility of the creeping 
flow equations and the symmetry of the ambient flow. Therefore this case does not 
contribute to the sum ( 2 ) ,  so that we obtain 

D’: I = D’I’ J + D?”. I ( 5 )  

In the same way, we can also define a monolayer diffusivity by assuming that the 
fluid tracer together with the centres of the other two spheres are confined on the 
same plane of shear. Obviously, all the trajectories of the fluid tracer and the particle 
centres will remain on that plane, owing to symmetry. In this case, the diffusivity of 
the tracer is given by 

0; = D;’ + D;“, (6) 
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and 

D; = n2 f W B  f (A32)2 V~B’dZ,’O’dZ~’d Y r ) .  
A’,C bound 

Here n denotes the number of spheres per unit area on the plane, and 

is the probability density for a monolayer of particles, as obtained by adapting to 
the two-dimensional case Batchelor & Green’s (197221) analysis for p(r) ,  with the 
functions A ( r )  and B ( r )  given by Batchelor & Green (1972~).  

Similar expressions for the self-diffusivity Dj and the monolayer self-diffusivity 0 2  
of a test sphere A can be written, with the fluid tracer A* replaced by the test sphere 
A. It should be noted though that, in computing the contribution to Dy for bound 
pairs, cf. (4), account should be taken of the fact that, as a result of its interaction 
with particle B, the doublet A-C will now suffer a net lateral displacement in contrast 
to the case when A is replaced by the fluid point A*. 

3. The velocity of a fluid tracer in the presence of two spheres 
Since the liquid tracer diffusivity depends on the lateral displacement of the fluid 

tracer for any given initial positions of the spheres B and C at time t = 0 (see (2)), 
we need to obtain the fluid velocity field in the vicinity of two spheres undergoing a 
simple shear flow, together with the velocities of the two spheres themselves. Now, 
while the latter are given in Batchelor & Green (1972a), the fluid velocity can be 
determined through a far-field expansion when the fluid point and the spheres are all 
far apart, and by Lamb’s series expansion when they are close together. 

The far-field expression of the fluid velocity was determined using the method of 
reflections, which we carried out up to and including terms of O(l/F7), with F denoting 
the typical distance between the two spheres or that between the liquid tracer and 
one of the spheres. Therefore, the velocity of A* can be written as 

V(A’)  = U ( x )  + V B - r A ’  + V C + A *  + VB-rC-rA’  + V C + B + A *  + 0 (9) 

where the subscripts denote the sequences of reflections. A direct calculation yields 
the following explicit expression : 

V(A’)  = U ( X )  + Y’ * E - [A*(r’)r’r’/rR + B*(r’ ) ( /  - ~ ’ r ‘ / r ’ ~ ) ]  

+iF(r’”) : (VF(r”)  : E + [ V f  ( Y ” )  : E l T }  

+&F(Y”’)  : V2{VF(r”)  : E + [VF(r”) : € I T )  
+$(r”’VVV(l/r”’))!G(r”) - { V V ( l / r ” ’ )  : G(r”)  

+&G(Y”) : (VV( l / r” ’ ) )  - k ( V V ( l / r ” ’ ) )  - [/ : G(r”)]  

- L F ( Y ’ )  2 : {VF(r”) : E + [VF(r”) : € I T )  
-LF(r’)  20 : V2{VF(r”)  : E + [vF(Y”) : E ] ~ }  

-r / f ’  . E . [A*(rlll)Yll’rlll/r11/2 + B*(rf!’)(/ - r / ! ! r f f ! / r t t 12 ) ]  
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- I ( r ‘ V V V (  24 l/r‘))!G(d‘) + $VV(l/ r ’ )  : G(r”)  

- ~ G ( Y ” )  12 : (VV(l / r ’ ) )  + h ( V V ( l / r ’ ) )  - [I : G(Y”)] + O(l/Fs), (10) 

where Y’ = Y - X ,  Y” = Z - Y and Y”’ = X - Z are the particle relative position 
vectors, E = (elel + e2e1)/2 is the rate-of-strain tensor of the ambient flow, while 
A * ( r )  and B * ( r )  are the scalar functions: 

5 3 ,  1 
B ( r )  = - 

2r3 2r5’ r5 ’ 
A ” ( r )  = - - - 

and the functions F ( r )  and G ( r )  are the third-order tensors 

(12) 

When A*, B and C are not all far apart, we used Lamb’s series expansion to 
determine the velocity of the liquid tracer together with the results of Yoon & Kim 
(1987), who determined the strengths of the singularities (i.e. the coefficients in Lamb’s 
expression) at the centre of two spheres moving in pure straining fluid flows. From 
these coefficients we constructed a general expression for the fluid velocity, noting 
that the motion of a fluid point near two arbitrarily oriented spheres in a simple shear 
flow can be decomposed into a uniform translation, a rigid-body rotation and a pure 
straining flow with rate of strain tensor E = (e1e2 + e2el)/2. Now, the contributions 
from the first two parts are obvious and that from the third part is determined by 
transforming the old reference frame into a new one, say Or,  in such a way that the 
centres of B and C lie on the e;-axis and are symmetric with respect to the new origin, 
with ei = e3 x e\/ie3 x eil, and e’, = ei x ei. 

But, as pointed out by Kim & Karrila (1991), the rate of strain tensor E ,  in 
the new coordinate frame, can be expressed as a linear combination of € ( I ) ’  = 

e;ei + eie’,, ~ ‘ ~ 1 ’  = e,e3 ’ ’ + eie‘,, and ?elel  + ?e2el - eie;, E‘”’ = e>e; + e;ei, E‘”‘ = 

E‘5”  = e‘,e; - eiei (This decomposition is consistent with the fact that any traceless 
rate of strain tensor has five independent components.) So, our problem reduces 
to that of determining the fluid velocity dk)‘ due to the presence of two spheres in 
an unperturbed flow field having constant shear rates E ( k ” ,  with k = 1 to 5. Now, 
the cases k = 1, 2 and 3 are exactly the same as the three subproblems solved by 
Yoon & Kim (1987) ,  while the last two cases can be easily reduced to the second 
and third, respectively, by appropriate coordinate transformations, namely d4)‘(x;, x;, 
x;) = d2)’(-x>. x’,, xi), and d5’’(.u’,, xi, xi) = u ( ’ ) ’ ( (  l/,,h)(x; -xi), ( l / a ) (x ’ ,  +x;), xi). 

Thus, by combining all these contributions, we found a series expression for the 
velocity of the liquid tracer for any given position of the fluid tracer and of the 
spheres B and C. Unfortunately, this series expansion converges very slowly when the 
spheres are close to each other ( r B c  - 2 < 0.01) and the fluid tracer is close to the 
surface of one of the spheres or to both of them. Therefore, since during their motion 
the two spheres can get very close to each other, special care must be taken for these 
cases. 

First, we noted that in order to keep the computation time within reasonable limits, 
we had to truncate Lamb’s expansion after 100 terms. In this case, the truncated 
series begins to lose its accuracy at distances smaller than 0.01 from the particle 
surface. Moreover, when the fluid point was placed on the particle surface, its velocity 
relative to that of the surface, as computed by the series solution, was found to be 
non-negligible, unless many more terms in Lamb’s expansion were retained. This is 
an important point not only because a small error in the determination of the fluid 

5 1 1  1 1 
6 r 6  r 2 

F ( Y )  = --YVV- - -VVV-, G(Y)  = -VVF(Y)  : E .  

I l l  I l l  
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velocity field could change significantly the final lateral position of the liquid tracer, 
but also because it could cause the liquid tracer to penetrate the solid sphere, thereby 
terminating the computation. But, when the liquid tracer is close to only one of the 
spheres, the leading term of its tangential and normal velocities relative to those of 
the surface of the sphere are obviously linear and quadratic in the distance from 
the surface, respectively. We then determined the corresponding local proportionality 
coefficients in the expressions for the tangential and normal velocity components 
referred to above, from the accurate velocity field at a distance 0.01 radii away from 
the surface, which was calculated via the 100-term Lamb’s expansion and the known 
velocity of the surface of the sphere (Yoon & Kim 1987). Thus, the velocity of any 
fluid point in this small region could be easily computed accurately to leading order. 

Conversely, when the liquid tracer lies in the gap between two almost-touching 
spheres, we used the lubrication approximation to determine its velocity for the 
three subproblems corresponding to €(I)’, E(2)‘  and E(3y defined above. In the first 
subproblem the two spheres move along their centreline with known opposite velocities 
(Yoon & Kim 1987) and thus the velocity of the fluid point in the gap is the same 
as that between two squeezing spheres in a fluid which is at rest at infinity. In the 
second subproblem, the spheres move normal to their centreline with again known 
translational and angular velocities, which can be treated separately. The velocity 
of the fluid point in the gap in these cases can be determined using the velocity 
expressions in the lubrication approximation. In the third subproblem, the spheres 
remain stationary and the velocity of, the fluid point is negligible, at least to the same 
order of approximation as in the above two cases. Thus combining the results of the 
three subproblems, we were able to determine accurately, to leading order in the gap 
distance, the velocity of the fluid point within the gap separating the two spheres. 

In both cases, our approximate fluid velocities were found to differ by less than 
0.2% from the results that were obtained using the truncated series expression with 
more terms retained. 

4. The interaction of three spheres 
For any set of initial positions of spheres B and C, the lateral displacement AX, 

of the test sphere A was determined by following the trajectories of A, B and C. 
This required the evaluation of the velocities of the spheres at a very large number 
of points, which forced us to use a method that is somewhat simpler than those 
employed by previous investigators (Mazur & Van Saarloos 1982; Van Saarloos & 
Mazur 1983; Kim 1987; Hassonjee, Pfeffer & Ganatos 1992; Cichocki et al. 1994), 
specifically the method of reflections when all the spheres are far apart from each 
other, and an asymptotic expression when two of the spheres are close to each other. 

In the first case, the reflections were carried out up to and including terms of 
O(l/f7), with f denoting the typical distance between any two spheres. Therefore, the 
velocity of A can be written as 

V ( A )  = U ( X )  + V B 4  + V C 4  + V A - r C - t A  + VA--.B+A 

+ V B 4 4  + V C + B + A  + 0(1/F8). (13) 

The velocities of B and C can be obtained from (13) by just shifting the labels. A 
direct calculation yields the following explicit expression : 

= U ( X )  + ir’  * E - [A(r’)y’r’/P + B(r’)(/  - r’r’/rr2)] 
-ir‘” . E . [A(y””V”’V”’/r’’’2 + ~ ( r ” ’ ) ( /  - r”’r”/r’’’2)] 

2 



Ttan wrrse shear-induced liquid and particle tracer diflusivities 

+ + [ F ( u ” ’ )  + { v 2 ~ ( r ” ’ ) l  : {vF(v”) : E + [VF(r”) : E ] ~ }  

263 

+ & F ( r ” ’ )  : V’(VF(r”) : E + [VF(r”) : E l T }  

+~(r’”VVV(l/r’’’))~G(d’) - +VV(l/r’”) : G(r”) 

+&G(r” )  : (VV(l/r”’)) - &(VV(l/r”’)) - [I : G(r”)] 

- ; [ F  (r’) + iV2F(v’)] : (VF(r”) : E + [VF(r”) : E l T }  

- L F ( r ’ )  20 : V2(VF ( r ” )  : E + [VF(r”) : E l T )  

-L(r’VVV(l/r’))!G(r’’) 24 + $VV(l/r’)  : G(r”) 

-”G(r”) 12 : (VV(l / r ’ ) )  + &(VV(l / r ’ ) )  - [I : G(r”)] + O(l/F*), (14) 

where the tensors F and G are given by (12) and 

5 8 25 35 16 10 
r 3  r5 r6 yX 3r 3rg r 9 ) ,  ~ ( r )  = + - + 0(ilr9), (15) A ( r )  = - - - + - - - + 0(1/ 

from da Cunha & Hinch (1996). 
By applying equations (14) and (15) to the case X = (0,0,0), Y = (2$,0,2) and 

2 = (2$, 2,0), we found that the sphere velocities thereby obtained differed from 
those of the full numerical solution of Hassonjee er al. (1992) by less than 0.4% 
relative to their respective speeds. 

In the second case, when two of the spheres, say A and C, are close to each other 
while the third one, say B, is far away, we first expressed the disturbance of the fluid 
velocity field u at a point x due to the presence of B as 

u = F ( r )  : E ,  (16) 

(17) 

where r = x - Y .  The above was then expanded about the midpoint of A and C as 

u ( x )  = u(xg) + E’  - (x - xg) + $2’ x (x - XI)) + ... ) 
where xo = ( X  + 2)/2,  (see figure l ) ,  while 

R’ = f v  x IClX”, E ’  = $7. + (Vu)T]I,. (18) 

Accordingly, up to and including terms of O( 1 / r 3 ) ,  A and C can be viewed as being 
immersed in a linear flow field with rate-of-strain tensor E + E‘ and angular velocity 
of solid-body rotation f2 + R’, so that the velocities of A and C are given by 

PA’ = U ( x 0 )  + u(xg - Y )  - p” ( E  + E ’ )  . [~(y’”~y’’’y”’/r’’’’ + ~ ( r ’ ” ) ( /  - y’””’’/~”’2)1 

+;(a + a’) x Y”’, (19) 

and 

Y c c )  = U(x, )  + u(x0 - Y )  + +r’” * (E + E ’ )  - [A(r”’)rrr’rrr’/r’r’2 + B(r”’)(/ - ~ ” ’ r ” ’ / r ’ ’ ’ ~ ) ]  

- L ( f 2  2 + a’) x r’”, (20) 

where the functions A ( r )  and B ( r )  are given by Batchelor & Green (1972a). The 
accuracy of (19) and (20) is discussed in the next section. 

Finally, the velocity of B can be evaluated by assuming pairwise additivity, i.e. by 
neglecting the effect on B of the reflections between A and C. 

An important property of equations (19) and (20) is that, by providing the correct 
expression for the relative velocities of spheres A and C when they are close to each 
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other, we prevent these two particles from ever overlapping during the course of the 
numerical calculation of their trajectories. 

Finally, when all three spheres are close together, pairwise additivity was used to 
determine the velocities of the spheres. Despite its being a crude approximation, this 
assumption did not affect the final result of our computation by more than 2%, as 
discussed in the next Section. 

5. The lateral displacement resulting from an encounter 

incoming spheres can be obtained by integrating the equations for the trajectories 
The lateral displacement of a fluid point resulting from its encounter with two 

together with the initial positions of the spheres at time t = 0. 
Let us start by considering the case when the three objects do not get too close to 

one another during their encounter, so that the reflection result (14) can be used to 
determine their trajectories. In this case, an asymptotic expression for A X j  is obtained 
by the method of successive approximations as 

A X j  = Vy')({)dt 

with { = ( X ,  Y , Z )  given by 

< =  Vdt s 
and V = ( V(A'),  V ( B ) ,  V'"), where V and { are expanded as V = V(O) + V(' )  + V ( 2 )  + ... 
and < = <(o)+{(1)+<(2)+... with V('), V(') etc. denoting the successive terms of different 
order in 1 / F  in (14). At zeroth order, all interactions between the spheres and the fluid 
particle are neglected, i.e. V(O) = U ,  so that the trajectories are just the unperturbed 
streamlines, with no lateral displacement. Next, considering that V(')  - O( l / F 2 )  
and V ( 2 )  - O(l/F4), where F is the typical distance between the spheres during their 
encounter, we find that again A X j  = 0 due to the left-right symmetry of Y(l)({(')) 
and V(2)( { (o) ) .  

Therefore, the leading term in the lateral displacement A X j  is O( l/F5) and is due 
to both V(')(<(O) + <('I) and V(3)(<(o)). 

Comparison of the O( l/F5) leading term of the lateral displacement A X j ,  as obtained 
from this asymptotic analysis, with the results of direct numerical integration showed 
excellent agreement for all initial configurations of the spheres as long as the distances 
between any two spheres and those between the fluid particle and the spheres were 
O(  1) or larger. 

For the case where the three objects are not always far apart from one another, 
equations (21) were integrated numerically using a fourth-order Runge-Kutta scheme. 

A similar approach was used to determine the lateral displacement of a test sphere. 
In particular, the method of successive approximations can also be used to determine 
the lateral displacement of the test sphere with the result that the leading term in the 
far-field asymptotic form is found to be also of O(l/F5). As an example, we plot, in 
figure 3, the displacement of A due to an encounter such that the trajectories of A, B 
and C pass through the points (O,O, 0), (0,3d, 4 4  and (24 2 4  2 4  respectively, where 

, 
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FIGURE 3. Displacement AX? of the test sphere due to encounters, when A, B and C pass through 
the points (0, 0, O), (0, 3 4  4 4  and (2, 2d, 2 4 ,  respectively, as a function of d. 0, Numerical results; 
-, asymptotic results using the far-field expansion as described following (1 5). 

d 3 1. It is seen that the agreement between the two sets of calculations is excellent 
even when the distances between the three objects during their encounter are of O( 1). 

The numerical results for the displacement AX] using the far-field expansion (13) 
for the velocity of the particles and those obtained by truncating the expansion to 
O ( l / r 5 )  were also compared and were found to differ by less than 5%. The difference 
could be positive or negative depending on the initial configurations. Specifically, for 
the trajectory passing through the configuration A(O,O,O), B(-3,1.5,0) and C(-6,2,0), 
AX2 increased by 4% if the expansion (13) was truncated at O(l/F5). 

At this point, a brief discussion is in order about the time step used to determine 
the particle trajectories. First of all, in addition to using a base time step, we also 
used a smaller one (i.e. one fifth of the base time step) when the three objects were 
close ( F  < 3) and a larger one (is .  four times the base time step) when they were far 
apart ( F  > 20). In addition, in order to determine the value of the base time step, we 
studied the trajectories of a closed pair of spheres and showed that when the base 
time step equalled 0.2, the spheres returned to their initial positions to within a 
approximation after completing 10 revolutions. Therefore, as the times involved in 
our collision were always shorter than that of this example, we concluded that 0.2 is 
a safe choice for our base time step. 

In the computation of the net transverse displacement, AXl, of the tracer particle 
for each given initial configuration of the spheres B and C, we must also calculate the 
forward and backward particle trajectories, from t = 0 to t = +,m and from t = 0 to 
t = --x, respectively. Therefore, in our numerical integrations, we defined a cut-off 
distance L such that, whenever the distance between the tracer and either B or C 
became larger than L, the effect of this far away sphere could be neglected, while that 
of the other sphere could easily be accounted for in terms of two-body interactions. 
But, since AXl  is the difference between the forward and backward displacements and 
is usually much smaller in magnitude than either of them, L must be large enough 
such that the cut-off error is small not only compared to the forward and backward 
displacements, but also compared to the net displacement AX,. In fact, L can be 
estimated in terms of the error F ,  say, in the net displacement due to interactions that 
take place outside the cut-off region. Thus, by considering that the transverse velocity 
component of the test sphere is of O(l/F3)  and then integrating outside the cut-off 
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FIGURE 4. Typical trajectories of spheres A ( - ), B ( - - - ) and C ( - - - - - - ), where their 
centres remain along the plane x3 = 0. (a) B and C come from infinity on the same side and interact 
with A, when X(O) = (O,O,O), YC0) = (-30,2,0) and ZiO) = (-20,1,0); (b) B and C come from 
infinity on the different sides and interact with A; when X(O) = (O,O,O), Y = (-30,-1.6,O) and 
Zio) = (-20,1,0); (c) A and C orbit around each other initially and remain bound after interacting 
with B, when Xi') = (O,O, 0), Y(O) = (-28,0.5,0) and Z(O) = (4,0,0); ( d )  A and C orbit around each 
other initially and break up after interacting with B, when X(O) = (O,O, 0), YC0) = (-33,040) and 
Z(O) = (4,0,0). 

region, we found that L - O( 1 / d 2 ) .  This point will be discussed further in detail in 
$6.2. 

A few typical trajectories are plotted in figure 4, where the centres of all three 
spheres remain within the plane x3 = 0. In particular, we wish to note that a bound 
pair of spheres was found to break up as a result of its interaction with a third sphere 
only very rarely, which is consistent with the fact that this can happen only when 
the relative positions of the spheres comprising the doublet are displaced out of the 
region of closed trajectories. Also, we observed that even in the most extreme cases, 
no particle overlapping occurred during the computation of the particle trajectories, 
thereby confirming that (19) and (20) indeed account for the correct lubrication force 
among the spheres. 

To better illustrate the salient features of these encounters, (AX,), is plotted 
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FIGURE 5. An illustration of the dependence of (AX,)? on Y,, assuming that the initial 
configuration of A*, B and C is X'O' = (O,O, 0), Y(O) = (-3, Y2,O) and Z(O) = (-6,2,0), respectively. 

Y p  

as a function of YF' in figure 5 for the initial configuration X(O) = (O,O,O), Y(O) = 

(-3, Yio', 0) and Z(O) = (-6,2,0). The existence of several peaks and zeros in this curve 
is a general feature of the integrand in the expressions for the diffusion coefficients, 
which greatly increased the difficulty in obtaining accurate numerical values for the 
corresponding integrals. The zeros correspond to these initial configurations, for which 
the trajectories of A, B and C are symmetric with respect to a plane perpendicular 
to the el-axis. For example, in the case where A, B and C happen to lie on the same 
plane perpendicular to the el-axis at a certain instant of time, the trajectories of A, B 
and C are then symmetric with respect to that plane, owing to the reversibility of the 
Stokes equations, and hence such encounters do not lead to a net lateral displacement 
of A. As another example, when B and C happen to lie on the same line parallel to 
the el-axis while A lies on the plane passing through the midpoint of B and C and 
perpendicular to the el-axis, then the trajectories are again symmetric with a zero 
lateral net displacement for A. 

6. The determination of the diffusion coefficients 
Finally, we turn to the task of calculating the integrals ( 3 ) ,  (4), (7), (8) and their 

counterparts for the particle diffusivities, and thereby determine all the diffusion 
coefficients defined in $2. Before doing this, we wish to show, however, that the 
integrals converge as the size of the collision box 1 - a, so that they can be evaluated 
using a large but finite collision box without having to resort to a renormalization. 

6.1. The convergency of the integrals 
First, let us consider the integral ( 3 )  when all the variables YT),  Y,(o),Zf'),Zf) and 
Zy) together with rBC are of O(r), where F >> 1. In this case, we have seen (see $4) 
that AX, is of O(l/F5), so that the integral in ( 3 )  converges as the size of the collision 
box 1 - co, and the error, i.e. the neglected contribution from encounters that take 
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place outside the collision box, is of O(l/l4>. Another contribution to the integral in 
(3) comes from the case where Y:’) and Y:’’ are of O( l), while the variables Z,(o), Zf) 
and Z:’) are of O(F), with 7; >> 1. Here, since B is moving slowly near the xl-axis, 
the leading-order effect of C on V(A’)  is the O(1/F2)-term disturbance in the far-field 
expansion, which, however, does not contribute directly to the lateral displacement 
of A*, due to its left-right symmetry. But, this disturbance is reflected by B to A* and 
contributes an O(1/r3)-term to A X j .  So, this contribution to the integrand of (3) is 
of 0( l / r6)  and its integral converges as the size of the collision box I - 03, with 
the error vanishing as l/13. A similar result is obtained when YF’ and Y;’) are of 
O(F), while rBC - 0(1), that is when B and C are close to each other and far from 
the el-axis. 

The integral (4) can be considered in the same way. Here, since Zi’),ZF) and Zi’) 
are of 0(1), while Yy’ and Y;” are of O(F), the displacement A X j  is of O(l/F3), the 
integrand in (4) is of O(l/F5) and the integral converges as I - a, with the error 
vanishing as l/13. 

Since, obviously, the integrals (7) and (8) converge even faster than ( 3 )  and 
(4), respectively, we can safely conclude that the fluid transverse diffusivities are 
determined via a series of integrals that converge as the dimension of the collision 
box 1 - 03. The same arguments can be applied to the corresponding expressions 
for the particle diffusivities. 

Finally, as described below, all the integrals were evaluated numerically over the 
domains discussed in 32 by applying a Gaussian-type scheme in order to minimize 
the number of trajectories that had to be computed. 

6.2. The monolayer fluid and particle diflusivities 
We started by computing the integral (7) for the monolayer diffusivity of the fluid 
tracer A*, which requires less computational time, so that we could easily study 
the consequences of the various changes of the computational parameters such as 
the number of mesh points needed in evaluating the integrals, the time step for the 
trajectory integration, the size of the box 1 and the cut-off distance L. 

As was described in 2, the integral (7) was evaluated fold by fold with respect 

to Z,(o’, was performed for different fixed values of Zf) at a given Y y )  and with 
different numbers of mesh points, using a six-point Gaussian quadrature and taking 
into account that the integrand has several peaks and zeros, as mentioned in 56.1 
(see figure 5). In order to quantify the sensitivity of the integral to the number of 
mesh points, we compared the values of the integral as obtained using 24 and 48 
mesh points, and found that the difference between the two sets was within 1% in 
this typical case. 

Concerning the integration with respect to Zp’, it turned out, again, that the 
difference between using 24 mesh points and 48 mesh points was within 1%. In 
addition, it appeared that most of the contribution to the final fold of integration, 
i.e. that with respect to YF’, comes from the interval 0 < YF’ < 1.5 and that the 
integrand has only one peak with respect to YF’. Therefore, we integrated with 
respect to YF’ by distributing 12 mesh points in the interval 0 < Yi0’ < 1.5 and 6 in 
the interval 1.5 < YF’ < 4, and then verified that the results of the integration were 
within 1% of those obtained using twice as many mesh points. 

Now, we turn to the values of 1 and L. The size of the box 1 was set equal to 4; a 
decrease from 4 to 3.5 was found to alter the final result by only 0.3%. For the cut-off 

to, in sequence, Zp),Zf ? and Yy’. The first fold integration, i.e. that with respect 
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distance L, we used L = 2000, and verified that the results of the integration were 
within 1% of those obtained using L = 1000. On the other hand, when L < 100, the 
results strongly depend on L. A simple estimate can help to explain why L must be so 
large. Since the error in the diffusion coefficient resulting from a small uncertainty 6, 

say, in the net lateral displacement of the tracer is O(6l4), by requiring that this error 
must be less than 1%, we find that 6 - O(10-6). Therefore since L is proportional to 
l / ~ ' ' ~  (see $3, we find that L - 0(103), in agreement with our numerical estimate. 

Similarly, we evaluated the integral (8) and obtained for the monolayer diffusivity 
of a fluid tracer 0; = 0.067C2. 

As a further check of the above result, we doubled the number of all the mesh points 
used in the three folds of our integrations and found that the first two significant 
digits in the coefficient of diffusivity remained unchanged. In addition, an increase 
of the basic time step from 0.2 to 0.4 was found to alter the final result by less than 
0.1%. 

In the computations referred above, we assumed that the expression for p ( u )  is valid 
both outside and inside the region of closed trajectories, corresponding to the case 
where a well-mixed suspension is first sheared in a pure straining flow and then is 
subjected to a simple shear flow. On comparing this value of D; with that obtained by 
letting p(r )  = 1 (i.e. a well-mixed suspension) within the region of closed streamlines, 
we found that the two results were only 0.2% apart, thereby showing that the value 
of 0; is insensitive to the choice of the pair distribution function within the region 
of closed trajectories. 

We now turn to the monolayer diffusivity of a test sphere. As we discussed in 54, 
this case is fundamentally different from that of the fluid diffusivity since, unlike the 
fluid velocity, which is known exactly, the velocity of a test sphere in the vicinity of 
two other spheres is known only approximately. First, let us examine the case when 
either B or C is close to A, while the other sphere is far away. Here, the sphere 
velocity can be determined approximately using (19) together with the conditions of 
pairwise additivity applied to the far away particles. In order to test the accuracy of 
this approximation, we derived similar equations for the velocity of a fluid particle 
in the vicinity of two spheres and compared the values of the fluid diffusivity @, as 
obtained using this approximate expression, with that using Lambs 100-term series 
expansion, finding that the two results were within 1% of each other. Hence, we 
concluded that (19) can be safely used to determine the lateral displacement of the 
test particle in the vicinity of one of the other spheres. 

Next, let us consider the case where, at some time during their encounter, the three 
spheres are in close proximity with each other. Here, a simple estimate shows that the 
contribution to the particle diffusivity due to those initial configurations which lead 
to such close encounters, is of O[C"~(AX])~ ] ,  where E is the gap between any two close 
particles while AX] is the typical net lateral displacement resulting from such close 
encounters. (Here, we have assumed that the pair conditional probability diverges as 
co8 (Batchelor & Green, 1972h).) Therefore, since both E and AX, are of O(lO-'), 
we conclude that the error in the diffusion coefficient is less than 1%, even when the 
tracer velocity is evaluated to an accuracy of &20%, which grossly over-estimates 
the error introduced by using (19) for such close encounters. As a double check, we 
also computed numerically the contribution to the diffusivity of the close encounters, 
finding that it is about 5%, thereby confirming the above estimate. 

Finally, we computed the particle monolayer diffusivity for a test sphere using the 
same number of mesh points, box length, cut-off distance and base time step as for 
the computation of the liquid monolayer diffusivity and found that D2 = 0.032C2. 
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FIGURE 6. An illustration of the dependence of the integrand on Yy’ after the first three fold 
integrations with respect to Zr’, Zf’ and YF’ have been performed and keeping Zf) = 0. 

Particle monolayer diffusivities, as obtained by direct numerical simulations, have 
been reported by Bossis & Brady (1987) for C = 0.453 and by Chang & Powell 
(1994) for 0.12 < C d 0.60. Although these values of 2. are of course quite outside 
the range of our analysis, Chang & Powell (1994) reported that, for 2. < 0.25, D2, 
was found to scale as C2 with the constant of proportionality being approximately 
0.2, i.e. six times greater than the value 0.032 that resulted from our analysis. 
One possible reason for this discrepancy may be due the the fact that, in the 
direct simulations of Chang & Powell (1994) using periodic boundary conditions, all 
interactions between a particle located at the centre of a unit cell and the particles 
outside the periodic cell were neglected, with the distance between the centre of the 
cell and its outer edge being approximately 15. But, when we recomputed & using 
our analysis by deliberately neglecting all interactions between any two particles 
whenever their separation exceeded 15, the coefficient was found to increase by a 
factor of 4. Thus, it would appear that, at least for very dilute systems, the cut-off 
distance used for far-field interactions, and therefore the size of the periodic box 
in numerical simulations, must be quite large. This point, though, deserves further 
study. 

6.3. The fluid and particle diflusivities 
The evaluation of (3) and (4) is almost the same as that of (7) and (8), except that 
it is more computationally intensive because of the additional two fold integrations 
which need to be performed. The plot of the integrand in (3) for the last two fold 
integrations is shown in figure 6 as a function of Y,(’) for fixed Zp)  = 0. The curve 
appears to be smooth, decreasing monotonically with respect to Y;” and the major 
contribution to the integral comes from the region Y:’) < 2. Using 12 mesh points 
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for the last two fold integrations, we found for the liquid diffusivities 0; = 0.12~’ and 
0; = 0.004~’ . 

Finally, the diffusivity of a test sphere was computed in the same way, giving 
D2 = 0.1 lc’ and D3 = 0 . 0 0 5 ~ ~  . 

It is surprising that for both the liquid and the particle diffusivities, the diffusion 
coefficient in the vorticity or e3-direction is smaller than that in the direction of 
the plane of shear, or e2 direction, by a factor of about 20. This is consistent 
with the corresponding results of da Cunha & Hinch (1996) for the self-diffusivities 
due to particles roughness, who obtained a corresponding ratio of about 10. Both 
these results, however, are limited to very dilute suspensions. In contrast, Phan 
& Leighton (1996) reported from experimental observations that this ratio for the 
particle diffusivities equals approximately 2/3 when 0.30 < c < 0.55. 

( 1996) measured experimentally the effective shear- 
induced coefficient of self-diffusion in a suspension of monodisperse spheres, finding 
that, in the dilute limit, the leading-order term is of O(c). Clearly, this result cannot 
apply to perfect spheres and can only be attributed to the non-sphericity and/or 
roughness of the particles that were employed. As for the coefficient of the next, 
O(c2), term, their measurements indicated that i t  is very small, consistent with our 
findings. 

Recently, Biemfohr et ul. 
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